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a b s t r a c t

Compacton propagation under dissipation shows amplitude damping and the generation of
tails. The numerical simulation of compactons by means of dissipative schemes also show
the same behaviors. The truncation error terms of a numerical method can be considered as
a perturbation of the original partial differential equation and perturbation methods can be
applied to its analysis. For dissipative schemes, or when artificial dissipation is added, the
adiabatic perturbation method yields evolution equations for the amplitude loss in the
numerical solution and the amplitude of the numerically-induced tails. In this paper, such
methods are applied to the Kð2;2Þ Rosenau–Hyman equation, showing a very good agree-
ment between perturbative and numerical results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Perturbation or asymptotic methods [1] can be used for the analysis of the errors introduced by numerical methods when
the local truncation error is considered as a perturbation of the original differential equation. For the initial value problem in
ordinary differential equations, regular and singular perturbation methods have been straightforwardly applied with success
[2,3, and references therein]. For nonlinear evolution equations, the application of perturbation methods in such a context is
more difficult, being only scarcely presented in the literature. A few exceptions require attention. Herman and Kickerbocker
[4] use direct perturbations not based in the inverse scattering transform in order to study the numerically-induced phase
shift in solitons of the Korteweg-de Vries equation propagated by means of the Zabusky–Kruskal scheme. Similar results
have been obtained by Marchant and Smyth [5] and Marchant [6] for generalizations of, respectively, the Korteweg-de Vries
and the Benjamin–Bona–Mahoney equations. Recently, Junk et al. [7] have studied by asymptotic methods the finite
discrete-velocity method for the lattice Boltzmann equation, determining order-by-order the accuracy and structure of
the error of the numerical equivalents for the flow velocity, pressure, and vorticity.
. All rights reserved.
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The solitary wave solutions of generalized Korteweg-de Vries may have compact support, the so-called compactons, in-
stead of presenting exponentially decreasing tails, characteristic of solitons. Let us consider the Kð2;2Þ compacton equation
by Rosenau and Hyman [8], given by
ut � c0ux þ ðu2Þx þ ðu2Þxxx ¼ 0; ð1Þ
where uðx; tÞ is the wave amplitude, x is the spatial coordinate, t is time, c0 is a constant velocity, and the subindex indicate
differentiation. The compacton solution of Eq. (1) is given by
ucðx; tÞ ¼
4c
3

cos2 x� ðc � c0Þt
4

� �
; jx� ðc � c0Þtj 6 2p; ð2Þ
where c is the velocity of the compacton.
Numerical solutions of the Kð2;2Þ equation show several numerically-induced phenomena, such as spurious radiation [9]

or ‘‘artificial tails” [10]. Perturbation methods may be applied in order to understand these phenomena and to estimate their
magnitudes, however, no general perturbation theory for compactons has been developed in the past. Recently, Pikovsky and
Rosenau [10] have applied the method of adiabatic perturbations to compactons. This method is widely known in soliton
theory [11–14], yielding the evolution of the soliton parameters on a slow time variable resulting from that of the invariants
of the partial differential equation. This method is applicable only for dissipative perturbations. In Ref. [10], only second- and
fourth-order linear dissipation for compactons of the Kð2;2Þ equation have been studied.

In this paper, the adiabatic perturbation method is applied to the analysis of the numerically-induced phenomena in the
numerical integration of Eq. (1) by means of two numerical methods, based on either the implicit Euler or the implicit mid-
point rule in time with a fourth-order spatial discretization, with and without ‘‘artificial” dissipation. Sections 2 and 2.1 pres-
ent both numerical methods and representative numerical results illustrating the damping of the numerical compactons and
the generation of tails. Section 3, after briefly reviewing the adiabatic perturbation method for Eq. (1), presents its applica-
tion to the implicit Euler method in Section 3.1 without ‘‘artificial” dissipation and in Section 3.2 for both methods with ‘‘arti-
ficial” dissipation. In Section 4 the perturbative results are compared with those obtained by the numerical methods in order
to determine their scope of validity. Section 5 is devoted to the main conclusions and future lines of research. Finally, an
Appendix A detailing the derivation of some equations is included.

2. Numerical methods

Let us consider the numerical solution of the compacton Eq. (1) by means of a Petrov–Galerkin approximation in space
with periodic boundary conditions, using C0 continuous piecewise linear interpolants as trial functions and C2 continuous
Schoenberg cubic B-splines test functions. For the nonlinear terms, the product approximation is applied. The resulting weak
formulation for Eq. (1) is as follows: Find a function
uðx; tÞ ¼
XN

j¼0

UjðtÞ/jðxÞ;
such that
hUt ;wki � c0hUx;wki þ hðU2Þx;wki þ hðU2Þx; ðwkÞxxi ¼ 0; ð3Þ
for all wkðxÞ; k ¼ 0;1; . . . ;N, where a uniform mesh is used, xj ¼ x0 þ jDx, the inner product is
hf ; gi ¼
Z xN

x0

f ðxÞgðxÞdx;
UjðtÞ ¼ Uðxj; tÞ approximates uðxj; tÞ, /jðxÞ are the usual piecewise linear hat functions associated with the node xj

(/jðxkÞ ¼ djk, the Kronecker delta), and wkðxÞ are cubic B-splines defined in a 4Dx interval, which are C2 continuous as required
by Eq. (3).

The evaluation of the inner products in Eq. (3), applying the product approximation, yields the following system of ordin-
ary differential equations
AðEÞ dUj

dt
� c0BðEÞUj þ BðEÞðUjÞ2 þ CðEÞðUjÞ2 ¼ 0; ð4Þ
where E is the shift operator, i.e., EUj ¼ Ujþ1 and
AðEÞ ¼ E�2 þ 26E�1 þ 66þ 26E1 þ E2

120
;

BðEÞ ¼ �E�2 � 10E�1 þ 10E1 þ E2

24Dx
;

CðEÞ ¼ �E�2 þ 2E�1 � 2E1 þ E2

2Dx3 :
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The method of lines given by Eq. (4) is fourth-order accurate for regular enough solutions since its truncation error terms are
given by
Fig. 1.
Dt ¼ 0:
Ut � c0ðUÞx þ ðU
2Þx þ ðU

2Þxxx ¼
Dx4

240
@7U2

@x7 þ OðDx6Þ:
However, in multicompacton solutions of the Kð2;2Þ equation, even for smooth initial data, shocks (or nonsmooth solutions)
are developed reducing the effective order of accuracy and introducing numerical instabilities. Artificial viscosity must be
introduced into the non-dissipative method given by Eq. (4) in order to avoid such instabilities. Here, as in Refs. [9,15–
17] the term l@4u=@x4, with small positive l, is introduced into the left-hand side of Eq. (1). This term is numerically dis-
cretized by means of a second-order accurate five-point difference formula, given by
DðEÞUj ¼
E�2 � 4E�1 þ 6� 4E1 þ E2

Dx4 Uj; ð5Þ
which is added to the left-hand side of Eq. (4).
Let us consider two methods for the integration in time of Eq. (4):
Method 1. The first-order implicit Euler method given by
AðEÞUj;mþ1 � Uj;m

Dt
� ðc0BðEÞ � lDðEÞÞUj;mþ1 þ ðBðEÞ þ CðEÞÞðUj;mþ1Þ2 ¼ 0;
where Uj;m � uðxj; tmÞ, and tm ¼ mDt.
Method 2. The second-order implicit midpoint rule, which is written as
AðEÞUj;mþ1 � Uj;m

Dt
� ðc0BðEÞ � lDðEÞÞ Uj;mþ1 þ Uj;m

2

� �
þ ðBðEÞ þ CðEÞÞ Uj;mþ1 þ Uj;m

2

� �2

¼ 0:
Methods 1 and 2 are of first- and second-order, respectively, of accuracy in time. The linear stability analysis by using the von
Neumann method for Methods 1 and 2, after linearization of Eq. (1), i.e., by taking u2 ¼ Uu, with U ¼ 2ðkuk1Þ, shows that
Method 1 is L-stable and Method 2 is A-stable, see Refs. [16,17]. Hence, both methods are (linearly) unconditionally stable.

2.1. Numerical propagation of compactons

Let us consider the numerical simulation of the propagation of a compacton by means of Methods 1 and 2, for l ¼ 0. Fig. 1
(left plot) shows a comparison between the compacton solution propagated by Method 1 (continuous line) and Method 2
(dashed line). Method 1 is dissipative for c0 – c, hence the amplitude of the numerical compacton propagated by this method
decreases with time, but Method 2 is non-dissipative and its results do not show any visible damping, as illustrated in Fig. 1
(left plot).

Extensive numerical results show that the numerical compacton propagated by means of Method 1 for c0 – c, shows a
‘‘tail” which stretches from its left edge at t ¼ 0, but no tail is found for either c0 ¼ c or when Method 2 is used. A typical
tail profile is illustrated in Fig. 1 (right plot), obtained by means of a vertical zoom of the result shown in Fig. 1 (left plot),
where the small tail is not appreciable. Note that the amplitude of the tail, after reaching a local maximum, decreases mono-
tonically to zero, hence in long-time simulations the tail decouples from the compacton, presenting a finite length (not illus-
trated in Fig. 1).
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Fig. 2. Superposition of multiple numerical solutions obtained at times t ¼ 10, 50, 90, 130, 170, 210, 250, 290, 330, and 370, such that the point at which the
tail has a local maximum coincides among them, by using Method 1 for Dt ¼ 0:05 (left plot) and Dt ¼ 0:2 (right plot), both with Dx ¼ 0:1; c ¼ 1; c0 ¼ 1=2,
and l ¼ 0.
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Numerical simulations show that the shape of the compacton tail due to the use of Method 1 has a profile that does not
change appreciably during the propagation of the compacton, as illustrated in Fig. 2, where the profile of the tail is clearly
visible by means of plotting several numerical results at different times superposed in such a way that the position of the
local maximum of the corresponding tails coincides. Fig. 2 shows that the slope of the front of the tail and the amplitude
of its local maximum decrease slowly in time.

In long time integrations using Method 1 under periodic boundary conditions, the tail of the compacton reenters the do-
main several times, mounting over itself, as illustrated in Fig. 3 for the intervals of integration [0, 80] (left plot) and [0, 150]
(right plot). In order to illustrate such behavior, both plots in Fig. 3 show a superposition of the numerical solutions at dif-
ferent times such that the position of the compactons have been reallocated in order to coincide exactly. The slope of the
front of the tail decreases, but its amplitude increases, as the tail reenters the domain several times. The finiteness of the
length of the tail results in a diminishing of the increment in amplitude of the tail after each reentering, as shown in both
plots of Fig. 3.

Numerical simulations of the propagation of a compacton by means of Methods 1 and 2, for l > 0, show the appearance
of a dissipative tail, illustrated in, respectively, the left plot and the right one of Fig. 4, both for l = 0.1, 0.01, and 0.001. Fig. 4
(left plot), corresponding to Method 1, shows that the amplitude of the tail diminishes as l does until reaching the amplitude
of the tail for l ¼ 0, which coincides with that of l ¼ 0:001 up to the plot resolution. Such behavior does not appear in Meth-
od 2, shown in Fig. 4 (right plot), for which the tail disappears as l diminishes. For large l, both plots in Fig. 4 show that the
tail presents a peak in its left front, and Fig. 4 (left plot) shows that the tail has a finite slope which is not visible in Fig. 4
(right plot), where a nearly constant positive plateau can be observed (in fact, longer simulations show that the tail also
has a small negative slope). The results shown in both plots in Fig. 4 suggest that the tails of Methods 1 and 2 have a finite
length and that those of Method 1 are the addition of two independent tails whose front velocity is the same but differs in
amplitude.
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Fig. 3. Superposition of multiple numerical solutions under periodic boundary conditions such that the point at which the compacton has a maximum
coincides among them, for an interval of integration of [0, 80] (left plot) and [0, 150] (right plot) by using Method 1 for Dt ¼ 0:1;Dx ¼ 0:1; c ¼ 1; c0 ¼ 1=2,
and l ¼ 0. Left plot shows solutions at times t ¼ 60, 240, 440, 660, 880, 1120, 1380, 1640, and 1920, and right plot at times t ¼ 100, 450, 1100, 1600, 2100,
2900, 3450, and 4000, in both cases corresponding to tails from bottom to top.
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3. Adiabatic perturbation theory for compactons

Adiabatic perturbation theory is a technique for the analysis of solitary wave solutions of nonlinear evolution equations
under dissipative perturbations. This technique determines the slow time evolution of the parameters of the solitary wave
based on that of the invariants under the perturbation. It has been previously applied to solitons [11–14], and recently ex-
tended to compactons by Pikovsky and Rosenau [10]. Let us review the application of such technique to Eq. (1), whose four
invariants are Ii ¼

R
/iðuÞdx, where /1 ¼ u;/2 ¼ u3;/3 ¼ u cosðxÞ, and /4 ¼ u sinðxÞ.

Let us consider a perturbation of the Kð2;2Þ Eq. (1) given by
ut þ ðu2Þx þ ðu2Þxxx � c0ux ¼ PðuÞ; ð6Þ
where jPðuÞj � 1 is a small function of u and its spatial and temporal derivatives. The integration in space of Eq. (6) yields
d
dt

Z 1

�1
udx ¼

Z 1

�1
PðuÞdx; ð7Þ
where the left-hand side is the temporal derivative of the first invariant of Eq. (1), i.e., exactly nil, and the right-hand side can
be null for perturbations preserving the first invariant (for example, for PðuÞ ¼ @QðuÞ=@x), otherwise being non-zero.

Eq. (7) may be used to determine the adiabatic evolution of the parameters of the compacton solution of the Kð2;2Þ equa-
tion if the perturbation does not preserve the first invariant. In such a case, an ansatz for a perturbed compacton solution of
Eq. (6), given by
ucðx; tÞ ¼
4cðtÞ

3
cos2 x� ðcðtÞ � c0Þt

4

� �
; jx� ðcðtÞ � c0Þtj 6 2p; ð8Þ
can be introduced into Eq. (7) yielding a differential equation for cðtÞ, from which the adiabatic evolution due to the pertur-
bation of the velocity and amplitude ð4cðtÞ=3Þ of the compacton can be determined. Note that, for an adiabatic perturbation,
cðtÞ must be a slowly varying function of the time, usually, depending on a small parameter characterizing the smallness of
the perturbation. As an example, let us take PðuÞ ¼ �eu, with jej � 1, for which Eq. (7) for uc given in Eq. (8) yields
8p
3

dcðtÞ
dt
¼ �e

8p
3

cðtÞ;
whose solution is
cðtÞ ¼ cð0Þe�e t;
indicating that both the amplitude and the velocity of the compacton decrease slowly as it evolves in time.
The adiabatic evolution of the parameters of the compacton for perturbations preserving the first invariant but not

preserving the second one, can be studied by similar means. Multiplying Eq. (6) by u2 and integrating in space results in
d
dt

Z 1

�1

u3

3
dx ¼

Z 1

�1
u2PðuÞdx;

Z 1

�1
PðuÞdx ¼ 0; ð9Þ
where the substitution of the compacton ansatz (8) gives an ordinary differential equation for the velocity cðtÞ as function of
the slow time t.

Pikovsky and Rosenau [10] have considered only the perturbation PðuÞ ¼ auxx � buxxxx, with jaj; jbj � 1, which preserves
the first invariant, for which Eq. (9) is
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80p
27

c2ðtÞdcðtÞ
dt
¼ �2p

27
ð4aþ bÞc3ðtÞ;
whose solution is
cðtÞ ¼ cð0Þe�ð4aþbÞt=40:
For a dissipative perturbation ða; b > 0Þ both the velocity and amplitude of the perturbed compacton diminish slowly in
time.
3.1. Adiabatic perturbations for numerically-induced dissipation

The truncation error terms in the modified equation of a numerical method [2,18] may be interpreted as a numerically-
induced perturbation to the original equation which can be analyzed by means of using asymptotic or perturbation methods
[4]. Such an approach can be applied to compactons numerically propagated by Methods 1 and 2, unfortunately, a general
perturbation method for compactons has not been developed yet. The adiabatic perturbation method for compactons may be
applied, at least, for dissipative numerical methods, like Method 1.

Method 1 preserves the first invariant of Eq. (1), hence Eq. (9) can be used to determine the evolution of the parameters of
a numerically perturbed compacton as function of the grid size and the time step, when the perturbation PðuÞ corresponds to
its truncation error terms. For Method 1, the corresponding perturbation is [19,20]
P1ðuÞ ¼ �AðEÞ
uðx; t þ DtÞ � uðx; tÞ

Dt
þ c0BðEÞuðx; t þ DtÞ � ðBðEÞ þ CðEÞÞu2ðx; t þ DtÞ; ð10Þ
where Euðx; tÞ ¼ uðxþ Dx; tÞ and uðx; tÞ is a solution of Eq. (1). The evaluation of Eq. (9) for the compacton solution (8) and
perturbation (10) is straightforward but cumbersome. The calculation greatly simplifies if P1ðuÞ is Taylor expanded about
t � Dt, i.e., by taking
P1ðuÞ ¼ �AðEÞ
uðx; tÞ � uðx; t � DtÞ

Dt
þ c0BðEÞuðx; tÞ � ðBðEÞ þ CðEÞÞu2ðx; tÞ: ð11Þ
The evaluation of Eq. (9) for the compacton solution (8) and perturbation (11), as detailed in Appendix A, yields
dcðtÞ
dt
¼ �cðtÞ

75Dt
33þ 26 cos

Dx
2

� �
þ cosðDxÞ

� �
sin2 ðc0 � cðtÞÞDt

4

� �
: ð12Þ
The analytical solution of Eq. (12) can be obtained in implicit form, omitted here for brevity, although a numerical solution
may be preferred in practice.

Eq. (11) can be simplified using its continuum limit by applying Taylor series expansion for small Dt and Dx, resulting
in
P1ðuÞ ¼
Dt
2

utt þ
Dx4

240
@7u2

@x7 �
Dt2

6
uttt þ

DtDx2

8
uxxtt þ OðDt3;Dt2Dx2;DtDx4;Dx4Þ: ð13Þ
The evaluation of Eq. (9) using Eq. (13) yields
dcðtÞ
dt
¼ Dt

320
ðDx2 � 16ÞðcðtÞ � c0Þ2cðtÞ þ OðDt3;DtDx4Þ; ð14Þ
which coincides, as expected, with the corresponding Taylor series expansion of Eq. (12) up to this order. The analytical solu-
tion of Eq. (14) up to the leading order term can be easily obtained in implicit form, but omitted here for the sake of brevity.

Eqs. (12) and (14) show that in the case of c0 ¼ cð0Þ, there is no damping and its amplitude remains constant. This favor-
able behavior does not occur in multicompacton initial solutions with compactons of different velocities. In such a case, the
best value for c0, in order to minimize the damping in the compactons, has to be equal to the mean of all the compacton
velocities.

A dynamical analysis of Eq. (12) shows that its steady states are cðtÞ ¼ 0 and cðtÞ ¼ ck ¼ c0 þ 8pk=Dt, for k 2 Z, being lin-
early and marginally stable, respectively. The steady states with k – 0 cannot be reached by the numerical method since the
Courant–Friedrichs–Lewy (CFL) condition [21], which in our case yields Dx=Dt P jck � c0j, requires Dx P 8pjkj, which is lar-
ger than the fixed width of any compacton for k – 0. The only steady states of Eq. (12) numerically reachable coincide with
those of Eq. (14).

The qualitative behavior of the numerical solution of Eqs. (12) and (14) is the same. Let us first consider the case c0 > 0.
For cð0Þ > c0, the solution cðtÞ tends to c0 as time goes to infinity, hence the damping rate of the compacton decreases to zero
and the compacton stops (in the inertial frame moving at c0). The amplitude of compactons with 0 < cð0Þ < c0 and anticom-
pactons ðcð0Þ < 0Þ diminishes to zero with time, i.e., such solutions tend to vanish. In multicompacton solutions, all the
compactons with cið0Þ > c0 tends to reach the same amplitude stopping at different locations, and those with cið0Þ < c0 tend
to disappear. For the case c0 < 0, the anticompactons with cð0Þ < c0 tends to stop in the inertial frame moving at c0, and anti-
compactons with c0 < cð0Þ < 0 and compactons ðcð0Þ > 0Þ tend to vanish.
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Method 2 also preserves the first invariant of Eq. (1), but does not conserve the second one. However, being a non-dis-
sipative method (for l ¼ 0), Eq. (9) cannot be used to determine the slow time evolution of cðtÞ. The proof is easy by means
of considering as perturbation its truncation error terms Taylor expanded at t þ Dt=2, given by
P2ðuÞ ¼ �AðEÞ
uðx; t þ Dt=2Þ � uðx; t � Dt=2Þ

Dt
þ c0BðEÞ

uðx; t þ Dt=2Þ þ uðx; t � Dt=2Þ
2

� ðBðEÞ þ CðEÞÞ uðx; t þ Dt=2Þ þ uðx; t � Dt=2Þ
2

� �2

; ð15Þ
for which the evaluation of Eq. (9) for the compacton solution (8) yields exactly a null value, as shown in Appendix A. This
result is expected from the fact that a non-dissipative perturbation does not behave adiabatically as required by the adiabatic
perturbation method [12,13].

The adiabatic perturbation method allows the estimation of the area under the tail, as shown by Pikovsky and Rosenau
[10], due to the conservation of the first invariant by the perturbation. Let us assume that the solution shown in Fig. 1 (right
plot) is uðx; tÞ ¼ ucðx; tÞ þ uTðx; tÞ, where uTðx; tÞ is the amplitude of the tail. The numerical simulations show that the tail
stretches from the left edge of the compacton at t ¼ 0, let say xL, up to the left edge of the compacton at t > 0, i.e., the tail’s
support is x 2 ½xL;XðtÞ� where
XðtÞ ¼ xL þ
Z t

0
ðcðsÞ � c0Þds: ð16Þ
The constant value for the first invariant is given by
I1 ¼
Z 1

�1
uðx; tÞdx ¼

Z XðtÞþ4p

XðtÞ
ucðx; tÞdxþ

Z XðtÞ

xL

uTðx; tÞdx ¼ 8p
3

cðtÞ þ ATðtÞ; ð17Þ
where ATðtÞ is area under the tail. This expression yields
ATðtÞ ¼ �
8p
3
ðcðtÞ � cð0ÞÞ; ð18Þ
where cðtÞ is the solution of Eq. (12).
In the general case, the adiabatic perturbation method cannot be used to estimate the shape of the tail. However, the

point of contact between the tail and the compacton can be easily obtained from Eq. (17) as
uTðXðtÞ; tÞ ¼
dATðtÞ

dt
¼ �8p

3
dcðtÞ

dt
: ð19Þ
This expression can be used to estimate the shape of the tail since, as illustrated in Fig. 2 for Method 1, its profile does not
change appreciably during the propagation of the compacton.

3.2. Adiabatic perturbations for artificial dissipation

The addition of artificial dissipation by a fourth-order linear term like Eq. (5) into Methods 1 and 2 introduces errors in the
amplitude and velocity of the numerically propagated compactons and the presence of an ‘‘artificial tail”. For Method 1, these
phenomena adds to those shown in Section 3.1. Let us show how the adiabatic perturbation method can be used in order to
understand the effects of Eq. (5) into Methods 1 and 2.

The perturbation introduced by Eq. (5) into Method 1 is the sum of P1ðuÞ, given by Eq. (11), and P3ðuÞ ¼ �lDðEÞuðx; tÞ.
The result of evaluating Eq. (9) for such perturbation yields
dcðtÞ
dt
¼ � cðtÞ

75Dt
33þ 26 cos

Dx
2

� �
þ cosðDxÞ

� �
sin2 ðc0 � cðtÞÞDt

4

� �
� 32l

5Dx4 sin4 Dx
4

� �
cðtÞ: ð20Þ
The only real steady state of Eq. (20) numerically reachable (for Dx < 4p) is cðtÞ ¼ 0. Hence, both compactons and anticom-
pactons, independently of cð0Þ, tend to disappear as time increases.

The perturbation introduced by Eq. (5) into Method 2, since P2ðuÞ has no contribution, is
P4ðuÞ ¼ �lDðEÞuðx; t þ Dt=2Þ þ uðx; t � Dt=2Þ
2

;

for which Eq. (9) yields
dcðtÞ
dt
¼ � 32l

5Dx4 cos2 Dt
4
ðc0 � cðtÞÞ

� �
sin4 Dx

4

� �
cðtÞ: ð21Þ
This equation can be easily solved numerically. The Taylor series expansion of Eq. (21) for small Dt results in
dcðtÞ
dt
¼ � 32l

5Dx4 sin4 Dx
4

� �
cðtÞ þ OðDt2Þ; ð22Þ
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whose analytical solution is
Fig. 5.
(dashed
quadra
Dx ¼ 0:
cðtÞ ¼ e�c tcð0Þ þ OðDt2Þ;
where
c ¼ 32l
5Dx4 sin4 Dx

4

� �
¼ l 1

40
� Dx2

960
þ OðDx4Þ

� �
;

showing that the main effect of the artificial dissipation in the compactons propagated by Method 2 is an exponential damp-
ing in time of their amplitude whose rate is a function of l, independently of Dt and Dx at the leading order of approxima-
tion. In fact, the only steady state of Eq. (21) numerically reachable (for Dx < 2p) is cðtÞ ¼ 0, which is linearly stable. Hence,
as with Method 1, both compactons and anticompactons tend to disappear as time increases.

Eqs. (18) and (19) can be used to estimate the area under the tail and its shape, respectively, by means of using Eq. (20)
(for Method 1) and (21) (for Method 2) as a function of l > 0.

4. Presentation of results

Let us compare the numerical results of Methods 1 and 2 for the propagation of one compacton with those obtained by
the adiabatic perturbation method developed in this paper in order to determine its scope of validity.

Fig. 5 (left plot) shows a comparison between the amplitude ð4cðtÞ=3Þ of the compacton numerically obtained by means of
using Method 1 with l ¼ 0 and the numerical evaluation of the solution of Eqs. (12) and (14), both by using an adaptive-step
solver, as a function of time for Dt ¼ 0:2 and Dt ¼ 0:05. Extensive simulations show results similar to those presented in
Fig. 5 (left plot) when the CFL condition holds, i.e., Dx=Dt P cðtÞ � c0. Both plots in Fig. 5 (left plot) show very good agreement
between numerical and perturbative results, confirming the validity of the adiabatic perturbation method. Moreover, the
solutions of Eqs. (12) and (14) are indistinguishable in both plots (their difference is smaller than 10�6). Our results imply
that, in practice, Eq. (14) may be preferred to Eq. (12) in order to estimate the damping of the compacton solution of Method
1 for small Dt and Dx.

Fig. 5 (right plot) shows the area under the tail of a compacton propagated by Method 1 with l ¼ 0, numerically calcu-
lated by means of the trapezoidal quadrature rule (continuous curve) and by means of the numerical evaluation of Eq. (18)
(dashed curve) as function of time for Dt ¼ 0:2 and Dt ¼ 0:05. Both plots in Fig. 5 (right plot) show very good agreement
between numerical and perturbative results. Moreover, the result of using Eq. (14) instead of Eq. (12) in the tail area esti-
mation is indistinguishable when plotted in Fig. 5 (right plot). Similar results have been obtained for other set of parameters
(when the CFL condition holds) in our extensive set of simulations (omitted here for the sake of brevity).

Fig. 6 shows the comparison between the tail shape profile obtained by means of Eq. (19) (continuous curve) and the
numerical solution of Method 1 (dashed curve), for l ¼ 0 and Dt ¼ 0:05 (left plot) and Dt ¼ 0:2 (right plot). Both plots in
Fig. 6 show reasonable agreement between the numerical and the perturbative results for the shape of the tail between
its maximum and the contacting point with the compacton. The front profile of the tail and its evolution, as shown in
Fig. 2 cannot be obtained by the present adiabatic perturbation method. In fact, Eq. (12) implies that uTðXð0Þ;0Þ is non-null,
since dcð0Þ=dt – 0 for cð0Þ – 0, in contradiction with the results shown in Figs. 2 and 6.

Fig. 7 shows a comparison between the numerical amplitude of the compacton obtained by means of using Method 1 (left
plot) and Method 2 (right plot) with several values of l, and the numerical evaluation of the solution of Eq. (20) (left plot)
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and (21) (right plot). The agreement between the adiabatic perturbation results and the numerical ones is excellent for all
values of l and improves as l decreases, verifying the validity of the asymptotic results.
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Fig. 8 shows a comparison between the numerically calculated area under the tail of the compacton obtained using Meth-
od 1 (left plot) and Method 2 (right plot) with three values of l, and the substitution in Eq. (18) of the numerical evaluation
of the solution of Eq. (20) (left plot) and (21) (right plot). Fig. 8 also verifies the validity of adiabatic perturbation method,
showing the good agreement between the adiabatic perturbation results and the numerical ones, and its improvement as
l diminishes.

Fig. 9 shows the comparison between the tail shape profile obtained by means of Eq. (19) (continuous curves) and the
numerical solutions (dashed curve) for Methods 1 (left plot) and 2 (right plot) with two values of l. Both plots in Fig. 9 show
good agreement between the numerical and the perturbative result for the shape of the plateau of the tail. However, the
front profile of the tail cannot be estimated by the present method. Let us note that, for Method 1, Eq. (20) confirms that
the tail is the result of the addition of two terms, one for l ¼ 0 and another one depending on l, as shown in Fig. 4 (left plot)
and discussed in Section 2.1.

5. Conclusions

The adiabatic perturbation method for compactons has been applied to the analysis of the numerically-induced phenom-
ena in two numerical methods for the Kð2;2Þ Rosenau–Hyman equation by taking into account the truncation error terms of
the numerical scheme as a perturbation of the original partial differential equation. Both methods use a Petrov–Galerkin
finite element formulation in space, but Method 1 uses the implicit Euler scheme in time, and Method 2 uses the implicit
midpoint rule. In absence of artificial dissipation, the perturbation results for Method 1 yields equations for the adiabatic
evolution of the amplitude of the compacton, the area under the numerically-generated tail, and the shape of this tail except
at its front, in very good agreement with the numerical simulations. Method 2 does not show these phenomena and corre-
spondingly the perturbation results are null. The addition of artificial dissipation in Methods 1 and 2 results in the appear-
ance of tails and compacton amplitude loss. The adiabatic perturbation results, for both Method 1 and 2, for the evolution of
the amplitude and velocity of the compacton, and the area and shape of the corresponding tails, with the exception of its
front, are also in good agreement with the numerical simulations.

The approximate analytical results obtained in this paper contain very useful information on the behavior of Methods 1
and 2. For example, for Method 1 with l ¼ 0 and c0 > 0, the velocity cðtÞ of compactons with cð0Þ > c0, tends to c0 as time
goes to infinity, but of those with cð0Þ < c0 tends to zero. This unexpected behavior has not been reported previously in the
literature on the application of the Euler implicit method for nonlinear evolution equations, up to the authors’ knowledge.
For both Method 1 and 2 with l > 0, the velocity and amplitude of the compactons always decreases as time evolves.
Another interesting feature discovered by our perturbation analysis is the fact that the ‘‘artifical” tails have a finite negative
slope and hence a finite length.

Present results depend strongly on the dissipation of the numerical methods considered, a requirement for the applica-
tion of the adiabatic perturbation method. The development of a general theory of perturbation for compactons, which may
allow the analytical determination of the whole profile of the tails of the compactons, including their front shape and its evo-
lution, is a very interesting topic for further research.
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Appendix A. Evaluation of Eq. (9) for P1 and P2

In order to simplify the calculation, let us take z ¼ x� ðc � c0Þt such that the compacton solution (8) yields
ucðx; tÞ � ucðzÞ ¼
4c
3

cos2 z
4

� �
¼ 2c

3
1þ cos

z
2

� �� �
; jzj 6 2p;
with ucðzÞ ¼ 0 for jzj > 2p, and the integral in the right-hand side of Eq. (9) is given by

Z 1

�1
ucðx; tÞ2Pðucðx; tÞÞdx ¼

Z 2p

�2p
ucðzÞ2PðucðzÞÞdz: ð23Þ
In order to evaluate this expression for Eq. (11), let us recall that, formally, E ¼ expðDxDÞwith Duðx; tÞ ¼ uxðx; tÞ (see Ref. [20]
for further details), thus the operators AðEÞ;BðEÞ and CðEÞ can be written as
AðEÞ ¼ AðexpðDxDÞÞ ¼ 33þ 26 coshðDxDÞ þ coshð2DxDÞ
60

;

BðEÞ ¼ BðexpðDxDÞÞ ¼ 10 sinhðDxDÞ þ sinhð2DxDÞ
12Dx

;

CðEÞ ¼ CðexpðDxDÞÞ ¼ sinhð2DxDÞ � 2 sinhðDxDÞ
Dx3 :
By means of using trigonometrical identities [22], the application of AðEÞ to the compacton solution yields
AðEÞucðzÞ ¼
2c
3
þ c

90
33þ 26 cos

Dx
2

� �
þ cosðDxÞ

� �
cos

z
2

� �
:

Similarly, the application of operators BðEÞ and CðEÞ to either the compacton solution or its square results in odd functions in
z. By means of symmetry considerations the evaluation of Eq. (23) for P1 yields
Z 2p

�2p
ucðzÞ2P1ðucðzÞÞdz ¼ �

Z 2 p

�2 p
ucðzÞ2AðEÞ

ucðzÞ � ucðz� fÞ
Dt

dz;

¼ �16pc3

405Dt
33þ 26 cos

Dx
2

� �
þ cosðDxÞ

� �
sin2 f

4

� �
; ð24Þ
where f ¼ ðc0 � cÞDt. Eq. (24) is the left-hand side of Eq. (12) after multiplication by 27=ð80pc2Þ.
Let us consider the evaluation of Eq. (23) for P2, cf. Eq. (21), which results in

Z 2p

�2p
ucðzÞ2P2ðucðzÞÞdz ¼ �

Z 2 p

�2 p
ucðzÞ2 AðEÞ

wcðzÞ
Dt
� c0BðEÞvcðzÞ

� �
dz�

Z 2 p

�2 p
ucðzÞ2ðBðEÞ þ CðEÞÞ ðvcðzÞÞ2 dz; ð25Þ
where, by using Eq. (8),
vcðzÞ ¼
ucðzþ f=2Þ þ ucðz� f=2Þ

2
¼ 2c

3
1þ cos

f
4

� �
cos

z
2

� �� �
;

and
wcðzÞ ¼ ucðzþ f=2Þ � ucðz� f=2Þ ¼ �4c
3

sin
f
4

� �
sin

z
2

� �
:

By means of symmetry considerations,

Z 2p

�2p
ucðzÞ2P2ðucðzÞÞdz ¼ 0;
since operator AðEÞ ðBðEÞ or CðEÞÞ applied to the odd (even) function wcðzÞ ðvcðzÞ or ðvcðzÞÞ2Þ yields an odd result.
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